
CueServer™ Software Development Kit (SDK)

For CueServer Firmware Versions 5.1.0 and Later

Distributor:

www.techni-lux.com

Phone: 407-857-8770
Fax: 407-857-8771
Email: sales@techni-lux.com

Interactive Technologies, Inc.
5295 Lake Pointe Circle Drive, Suite 100
Cumming, GA 30041 USA
Phone: 678-455-9019
Fax: 678-455-9071

Email: support@interactive-online.com
Web: http://interactive-online.com/

CueServer and the Interactive Technologies logo are trademarks of Interactive Technologies, Inc. All
other trademarks referenced in this document are the property of their respective owners.

The CueServer firmware, design and documentation are copyrighted by Interactive Technologies,
Inc. The firmware used in CueServer embodies valuable trade secrets proprietary to Interactive
Technologies, Inc. and is licensed, not sold, and may not be duplicated in any way.

Specifications subject to change without notice.

Copyright © 2005-2014 Interactive Technologies, Inc. All rights reserved worldwide.

Printed in the United States of America.

Document D0440

Revised 6/14

CueServer SDK Table of Contents | i

Table of Contents

Introduction . 1

HTTP Interface . 2
CueServer SDK URLs . 2

/exe.cgi . 2
/cmd.cgi . 3
/pcmd.cgi . 4
/get.cgi . 4

BV (Button Values) . 5
CC (Command Context) . 5
FF (Flicker Finder) . 5
IN (DMX Input) . 5
LST (Get Resource List) . 6
OUT (DMX Output) . 6
OV (Output Values) . 6
PI (Playback Info) . 6
PS (Playback Status) . 7
PO (Playback Output) . 7
P1 .. P4 (Playback Channel Values) . 7
RES (Get Resource) . 7
SI (System Info) . 8
GRP (Group Channel Values). 8

/set.cgi . 9
P1 .. P4 (Playback Channel Values) . 9
RES (Set Resource). 9

/xml.cgi . 10

Resources . 11
About Resources . 11
Resource Definitions . 11

CueInfo Resource . 11
CueData Resource . 12
CueStream Resource . 13
Group Resource . 13
Button & Contact Resources . 14
Timer Event Resource . 15
Timecode Event Resource . 15
Macro Resource . 16
DMX Input Trigger Resource . 16

ii | Table of Contents CueServer SDK

CueServer .csd File Format . 17
File Specifications . 17

CueServer SDK Introduction | 1

Introduction
The CueServer Software Development Kit (SDK) is designed for software programmers who want to
use the powerful DMX playback capabilities of CueServer in their own applications.

CueServer has a complete set of open Application Programming Interfaces (APIs) that allow you to
develop your own software that can interact with CueServer, request real-time information about the
show it is playing back, send live data to CueServer that it should output to the connected devices,
and load and store show data in CueServer’s internal memory.

There are several mechanisms that software programmers can use to interact with CueServer:

 • HTTP CGI Interface - CueServer includes several special URLs that are used to interact with
virtually all aspects of its operation. Using these URLs you can issue real-time CueScript
commands, send DMX data, request operating parameters and load and store show data
of any kind.

 • Resources - All CueServer show data is stored as a collection of “resources” in a database,
either in CueServer’s internal memory or in a CueServer .csd data file.

 • CueServer .csd File Format - The .csd file format encapsulates an entire CueServer show,
including cue data, event triggers and system configuration. You can read and/or gener-
ate these files and either save them to disk or upload and download them to a physical
CueServer device.

 • XML Interface - CueServer also includes an XML interface for interactive with CueServer
from software objects that require XML formatted transactions (such as Adobe Flash).

This document describes the Public API features that are available in CueServer Firmware 5.1.0 and
later. If you use a firmware version earlier than this, unexpected results may occur.

2 | HTTP Interface CueServer SDK

HTTP Interface
CueServer includes an embedded web server that responds to HTTP requests. In addition to the
standard URLs that a user of the Web Interface would see, a special set of URLs are available in
CueServer that can be used to fetch real-time information from CueServer, run CueScript commands,
set operating parameters and to load and store CueServer resource data.

This chapter describes the various URLs that are available and their function.

Command throttling (IMPORTANT)
It is very imporant to employ a throttling mechanism when sending HTTP requests. New requests
should only be sent after a response to the previous request has been received from CueServer.
This mechanism allows CueServer to manage requests and responses gracefully and it prevents
your code from sending a large number of commands blindly in a very short period of time (for
example, moving a slider in a rapid fashion). Not implementing this mechanism could result in many
dropped requests and commands, and theoretically to performace issues effecting other functions of
CueServer due to extremely high CPU usage.

CueServer SDK URLs

/exe.cgi
The exe.cgi URL is used to execute CueScript commands.

When sending a exe.cgi request to a CueServer, you can use the following parameters:

 • cmd=<CueScript Command>
This parameter is used to specify the CueScript command to be executed by the CueServer.
It is important to remember to URL encode the characters in the command (all spaces are
must be converted to ‘+’, and certain punctuation must be converted to the appropriate ‘%’
notation).

 • usr=<User Number> (optional)
This optional parameter can be used to indicate which remote user is executing the
command. By default, the user number is zero, which corresponds to the same user that
may be using CueServer’s web interface. User numbers 1, 2, 3 & 4 are also available to use in
situations where multiple concurent users may be executing commands on the CueServer at
the same time. Using different user numbers allows each user’s context to remain separate.

CueServer SDK HTTP Interface | 3

 • def=<Default Playback> (optional)
This optional parameter can be used to specify the default playback number that should be
used to execute the command. If not specified, the playback will be the last playback speci-
fied by the user (which is typically desired). In some cases, it is preferable to require that a
command execute in a specific playback, which can be assigned using this parameter.

The response from the CueServer is the raw result of executing the command. Most commands
return a single 2-byte integer, with 0x0000 meaning no error occurred.

For example, to send the command “Cue 1 Go”, request the following URL:

http://<address>/exe.cgi?cmd=Cue+1+Go

To send the command “Channel 1>10 At FL” using User Number 1 and forcing CueServer to use
Playback 3, request the following URL:

http://<address>/exe.cgi?cmd=Channel+1%3E10+At+FL&usr=1&def=3

/cmd.cgi
The cmd.cgi URL is used to execute CueScript commands with a redirect response from the
CueServer that causes the web browser the originated the request to reload the original page that
made the request.

This URL is designed to be used from a web page that executes a command and then requires
the web page to reload itself.

When sending a cmd.cgi request to a CueServer, you use the following parameter:

 • cmd=<CueScript Command>
This parameter is used to specify the CueScript command to be executed by the CueServer.
It is important to remember to URL encode the characters in the command (all spaces are
must be converted to ‘+’, and certain punctuation must be converted to the appropriate ‘%’
notation).

The response from the CueServer is a HTTP Redirect (code 302) to the referrer page. This
causes web browsers to reload the original page after the resonse is received.
The CueServer web interface uses this URL in several forms.

4 | HTTP Interface CueServer SDK

/pcmd.cgi
The pcmd.cgi URL is used to parse a CueScript command into it’s English expansion.

When sending a cmd.cgi request to a CueServer, you use the following parameter:

 • cmd=<CueScript Command>
This parameter is used to specify the CueScript command to be parsed by the CueServer.
It is important to remember to URL encode the characters in the command (all spaces are
must be converted to ‘+’, and certain punctuation must be converted to the appropriate ‘%’
notation).

For example, to expand the command “T1C10AFL” to its English string, request the following
URL:

http://<address>/pcmd.cgi?cmd=T1C10AFL

The plain text response send back to the requester will be

Time 1 Channel 10 At FL

/get.cgi
The get.cgi URL is used to fetch real-time information or resource data from a CueServer.

This URL can fetch many different objects, depending on the value of the req parameter in the
URL. Some requests require additional parameters to be specified in the URL.

The following parameters are used with the get.cgi request. Only req is required, the other
parameters are only used in certain requests.

 • req=<Request Type>
This is a two or three character string that specifies what is being requested from the
CueServer. See the list below for details.

 • type=<Resource Type> (optional)
This is an optional number that corresponds to the Resource Type being requested by either a
Get Resource or Get Resource List request.

 • id=<ID> (optional)
This is an optional number that corresponds to either a Resource ID or an object ID (such as
with the Get Playback Info request).

 • page=<Page Number> (optional)
This is an optional number that is used to fetch multiple pages from the Get Resource List
request.

 • usr=<User Number> (optional)
This is an optional number that is used with the Get Command Context request.

 • p=<ID> (optional)
This is an optional playback ID that is used with the Get Group Channel Values request.

CueServer SDK HTTP Interface | 5

The following specific request values are available for the req parameter:

BV (Button Values)

This request returns a block of 512 bytes that correspond to the current indicator values for
the possible 512 buttons assignable to a CueServer.

CC (Command Context)

This request returns the following data structure that represents the requested command
context. Use the usr parameter to specify which context to fetch (0..4).
typedef struct CommandContext {
 unsigned int curPlayback; // [0] Current playback number (0..3)
 unsigned char curTarget; // [2] Current command target
 unsigned char isDMXTarget; // [3] Is the target a DMX collection
 unsigned int fadeUpTime; // [4] Fade Up Time
 unsigned int fadeDownTime; // [6] Fade Down Time
 unsigned char reserved[8]; // [8] Reserved
 unsigned char selectMask[64]; // [16] Selected object mask
} CommandContext;

FF (Flicker Finder)

This request returns the following data structure that represents the result of analyzing the
DMX Input stream for any changes since the last Flicker Finder request.
typedef struct FlickerFinder {
 unsigned char flickerData[512]; // [0] Change number array
 unsigned char valueData[512]; // [512] Channel value array
} FlickerFinder;

If no DMX Input is present when the Flicker Finder data is requested, the response will be a
single byte 0x00.

IN (DMX Input)

This request returns the current DMX Input channel values being received by the CueServer’s
DMX Input port.

If CueServer is receiving 512 channels, then 512 bytes will be returned. If CueServer is receiv-
ing less than 512 bytes, then only that number of bytes is returned. If no DMX Input is being received at all, the response will be a single byte 0x00.

6 | HTTP Interface CueServer SDK

LST (Get Resource List)

This request returns the list of Resource IDs from CueServer’s database for a particular
resource type. Use the type URL parameter to specify what Resource Type to fetch.

The response to this request is an array of the following 3-byte data structure:
typedef struct ResourceListItem {
 unsigned int resID; // Resource ID
 unsigned char resSeed; // Resource Seed
} ResourceListItem;

If no resources of the given type were found, the result is null.

If more than 400 resources of the given type were found, only the first 400 are returned. Use
the page parameter in the URL to fetch the next page of 400 resources.

OUT (DMX Output)

This request returns the current DMX Output channel values being sent out the CueServer’s
DMX Output port.

The response to this request is always 512 bytes.

OV (Output Values)

This request returns a block of 512 bytes that correspond to the current digital output values
for the possible 512 digital outputs assignable to a CueServer.

IMPORTANT: This is not the same as the DMX Output channel values.

PI (Playback Info)

This request returns the following data structure that describes the current detailed state of
the requested playback fader. Use the id parameter to specify which playback fader to fetch
(0..3).
typedef struct PlaybackInfo {
 unsigned char playback; // Playback number (1..4)
 unsigned char runMode; // Run Mode (0 = Normal, 1 = Stopped)
 unsigned char outputLevel; // Output level (0..255)
 unsigned char combineMode; // Combine Mode
 unsigned int fadeTimer; // Remaining fade time in progress
 unsigned int followTimer; // Remaining follow time in progress
 unsigned long streamTimer; // Stream playback position
 unsigned int currentCue; // Cue currently playing
 unsigned int nextCue; // Next cue (0 = None, 1 = Cue 0.1)
 unsigned long fadeTimes; // Fade Times (up/down) for next cue
 unsigned int followTime; // Follow Time for next cue
 unsigned int linkCue; // Linked cue for next cue
 unsigned char reserved[8]; // Reserved
 unsigned char currentName[32]; // Name of current cue
 unsigned char nextName[32]; // Name of next cue
} PlaybackInfo;

CueServer SDK HTTP Interface | 7

PS (Playback Status)

This request returns the following data structure that describes the current overall state of all
playback faders:
typedef struct PlaybackInfo {
 unsigned int current1; // Playback 1 Current Cue
 unsigned int next1; // Playback 1 Next Cue
 unsigned int reserved1[4]; // Reserved
 unsigned int current2; // Playback 2 Current Cue
 unsigned int next2; // Playback 2 Next Cue
 unsigned int reserved2[4]; // Reserved
 unsigned int current3; // Playback 3 Current Cue
 unsigned int next3; // Playback 3 Next Cue
 unsigned int reserved3[4]; // Reserved
 unsigned int current4; // Playback 4 Current Cue
 unsigned int next4; // Playback 4 Next Cue
 unsigned int reserved4[4]; // Reserved
} PlaybackInfo;

PO (Playback Output)

This request returns the current output values and DMX source data for each DMX channel in
the system. The following data structure is returned:
typedef struct PlaybackOutput {
 unsigned char channelValues[512]; // Channel Values
 unsigned char dmxSource[512]; // DMX Sources
} PlaybackOutput;

P1 .. P4 (Playback Channel Values)

This request returns the current output values and DMX source data for each DMX channel in
a specified playback fader. The following data structure is returned:
typedef struct PlaybackOutput {
 unsigned char channelValues[512]; // Channel Values
 unsigned char dmxSource[512]; // DMX Sources
} PlaybackOutput;

RES (Get Resource)

This request returns a resource from CueServer’s database.

Use this command with the type and id URL parameters to specify which resource data to
fetch.

The returned result will be a block of 512 bytes for the specified resource.
If the resource could not be found, a single byte corresponding to an error code is returned.

8 | HTTP Interface CueServer SDK

SI (System Info)

This request returns the following data structure that describes the current overall state of the
CueServer:
typedef struct SystemInfo {
 unsigned char serial[16]; // Serial Number
 unsigned char deviceName[24]; // Device Name
 unsigned char firmwareVersion[12]; // Firmware Version
 unsigned char timeStr[24]; // Time String
 unsigned char model; // 0 = Unknown, 1 = CS-800, 2 = CS-810, etc.
 unsigned char hasPassword; // 0 = No, 1 = Yes
} SystemInfo;

GRP (Group Channel Values)

This request returns the value of a group of channels. Use it to detect DMX values for all
channels in a group, or whether the values are the same for all channels (useful for group
button indicator or group slider).

Use this command with the id and p URL parameters to specify group number and desired
playback fader. Use p=0 for Output values. For example, to detect values for group 1 on
playback fader 1, send the following request:

http://<address>/get.cgi?req=grp&id=1&p=1

The returned result will be 2 byte signed integer. If all channels in the group have no DMX
value (not zero), or if one or more channels is different from the rest of the group, the returned
value will be -1 (0xFFFF). If all channels have the same valid value (including zero), then the
response will be the DMX value (f.e. 0x0A00 for decimal DMX value 10).

If there is only one channel in the group, the returned result will be a DMX value, unless the
channel has no value, which will return -1.

CueServer SDK HTTP Interface | 9

/set.cgi
The set.cgi URL is used to store real-time information or resource data to a CueServer.

This URL can set many different objects, depending on the value of the dst parameter in the
URL. Some set requests require additional parameters to be specified in the URL.

The following parameters are used with the set.cgi request. Only dst is required, the other
parameters are only used in certain requests.

 • dst=<Destination>
This is a two or three character string that specifies what data is being set in the CueServer.
See the list below for details.

 • type=<Resource Type> (optional)
This is an optional number that corresponds to the Resource Type being set by a Store
Resource request.

 • id=<ID> (optional)
This is an optional number that corresponds to a Resource ID.

 • del=<ID> (optional)
This is an optional number that corresponds to a Resource ID that is being deleted.

The following specific request values are available for the dst parameter:

P1 .. P4 (Playback Channel Values)

This request will set the current values of one of the playback faders to the given buffer of 512
bytes.

The result of setting a playback’s channel values in this manner is immediate, with no fade
time used.

If more or less than 512 bytes are provided, no channels will be set and this will return an error
code.

If the request was successful, a single byte 0x00 will be returned.

RES (Set Resource)

This request will set the data of the specified resource to the given bytes.

Use the type and id URL parameters to specify the Resource Type and ID of the resource
data to store.

If the optional del URL parameter is specified, then the resource with this ID is deleted imme-
diately before the new resource data is stored. Using the del parameter with the id param-
eter is useful when renumbering resources.

10 | HTTP Interface CueServer SDK

/xml.cgi
CueServer provides a simple XML interface for requesting and setting a subset of objects.
This mechanism was developed for simplyfying the integration with Adobe Flash projects.

The details of this URL are available from Interactive Technologies technical support if needed.

CueServer SDK Resources | 11

Resources

About Resources

All show data is stored in CueServer as a series of “resources”. A resource is a data object that is
identified by a Type and ID (and in the case of CueStream resources, also a Time). The definition
of every object in CueServer, such as a Cue, Timer, Macro, Button, etc., is stored in CueServer’s
memory as individual resources.

Resource Types generally correspond to the object that the resource represents. For example, each
Timer defined in a show is stored in a Timer resource.

The Resource ID is a unique number that identifies multiple resources of the same type. For
example, the data for Macro 7 is stored in a resource of type Macro, with an ID of 7.

You can think of resources as CueServer’s file system. There are no directories, just a database of
resources organized by Type and ID. When a new show is loaded into CueServer, the database is
replaced with new resources, and CueServer begins playing a new show, and responding to different
buttons, executing new timers, etc.

Every resource contains exactly 512 bytes of data, however, not all resource types use all 512 bytes.
Each resource type is defined by a data structure that specifies where each data field is located in the
512 byte data block.

The CueServer .csd file format is largely a list of CueServer data resources. Also, the CGI API for
CueServer allows other software to load and store resources of any type on the fly while a CueServer
is running.

Resource Definitions

This section provides details about each resource type.

CueInfo Resource

The CueInfo resource provides details about a cue, including it’s name, fade and follow times,
link, channel mask, CueScript action and more. It does not, however include the channel values.
Channel values are stored in a separate CueData resource with the same ID.

The Resource ID of a CueInfo resource is ten times (x10) the Cue Number. For example, Cue 1 is
stored in ID 10. Cue 2.5 uses resource 25. Valid cue numbers range from 0.1 through 6499.9,
which corresponds to IDs from 1 through 64999.

12 | Resources CueServer SDK

The following C data structure defines the fields in the CueInfo resource:
#define RESTYPE_CUEINFO 0x10 // Resource type for CueInfo resources
#define CUE_LIST_MAX_SIZE 2000 // Maximum number of cues in the cue list
#define MAX_CUE_NUMBER 64999 // Maximum cue number = 6499.9

typedef struct CueInfo {
 unsigned int cueNumber; // [0] Cue number (1..64999)
 unsigned int reserved1; // [2] Must be 0xFFFF
 unsigned int followTime; // [4] Follow time
 unsigned int linkCue; // [6] Follow cue
 unsigned char type; // [8] Type: 0 = Normal, 1 = Stream
 unsigned char flags; // [9] Flags: Bit 0 = Decimal Adjusted Cue Number
 unsigned char followMode; // [10] Follow Mode for Streaming Cues
 unsigned char reserved2[11]; // [11] Reserved
 unsigned long fadeTimes; // [22] Split fade times (MSW/LSW = Up/Down)
 unsigned long streamDuration; // [26] Total time of stream (ms)
 unsigned int streamBlocks; // [30] Number of stream blocks in cue
 unsigned char name[32]; // [32] Name
 unsigned char mask[64]; // [64] Bitmask
 unsigned char command[128]; // [128] Command string
} CueInfo;

CueData Resource

The CueData resource is used in conjunction with “normal” cues. For each CueInfo resource with
type = 0, a corresponding CueData resource with the same ID will also be in the database that
includes the channel levels for the cue.

The following C data structure defines the CueData resource:
#define RESTYPE_CUEDATA 0x11 // Resource type for CueData resources

typedef struct CueData {
 unsigned char levels[512]; // [0] Channel levels
} CueData;

CueServer SDK Resources | 13

CueStream Resource

The CueStream resource is used in conjunction with “Streaming” cues. For each CueInfo
resource with type = 1, one or more CueStream resources with the same ID will also be in
the database that represent various snapshots throughout the recorded stream. CueStream
resources are the only resources that have multiple records with the same resource Type and ID
(but with unique Times).

So, for example, if Cue 1 is a Streaming Cue, then a single CueInfo resource with ID 10 will
appear in the database and one or more CueStream resources with ID 10 will also appear in the
database. Each CueStream resource will be recorded with a different Time property. Resource
Times are expressed in milliseconds.

The following C data structure defines the CueStream resource:
#define RESTYPE_CUESTREAM 0x07 // Resource type for CueStream resources

typedef struct CueStream {
 unsigned char levels[512]; // [0] Channel levels
} CueStream;

Group Resource

The Group resource provides details about a Group, including it’s name and a bitmask indicating
which channels are part of the group.

The Resource ID of a Group resource is equal to the group number. Valid group numbers range
from 1 through 999.

The following C data structure defines the fields in the Group resource:
#define RESTYPE_GROUP 0x12 // Resource type for Group resources
#define GROUP_LIST_MAX_SIZE 100 // Maximum number of groups in the group list
#define MAX_GROUP_NUMBER 999 // Maximum group number

typedef struct GroupResource {
 unsigned int groupNumber; // [0] Group number
 unsigned char reserved1[14]; // [2] Reserved
 unsigned char mask[64]; // [16] Bitmask
 unsigned char name[32]; // [80] Name
} GroupResource;

14 | Resources CueServer SDK

Button & Contact Resources

The Button or Contact resource provides details about a Button or Contact, including it’s name,
its trigger parameters and the CueScript actions it should perform.

The Resource ID of a Button or Contact resource is equal to the button or contact number.
Valid resource IDs range from 1 through 512. The only difference between a button or contact
resource is its Resource Type.

The following C data structure defines the fields in the Button and/or Contact resource:
#define RESTYPE_BUTTON 0x1B // Resource type for Button resources
#define MAX_BUTTON_NUMBER 512 // Maximum button number
#define BUTTON_LIST_MAX_SIZE 512 // Max number of groups in the button list
#define RESTYPE_CONTACT 0x1C // Resource type for Contact resources
#define CONTACT_LIST_MAX_SIZE 512 // Max number of groups in the contact list
#define MAX_CONTACT_NUMBER 512 // Maximum contact number

typedef struct ButtonResource {
 unsigned int id; // [0] Button ID (1..512)
 unsigned char type; // [2] 0 = button, 1 = contact
 unsigned char function; // [3] 0 = momentary, 1 = state-driven, etc.
 unsigned int param; // [4] Channel/Group/Preset Number
 unsigned long fadeTimes; // [6] Split Fade Times
 unsigned char level; // [10] Level
 unsigned char flags; // [11] Flags
 unsigned int group; // [12] Group
 unsigned char reserved[10]; // [14] Reserved
 unsigned char indicatorMode; // [24] 0 = none
 unsigned char indicatorFlags; // [25] Bit 0 = Use Off Color, Bit 1 = Use On Color
 unsigned int indicatorParam; // [26] Channel/Group/Preset Number
 unsigned int indicatorGroup; // [28] Group
 unsigned char onColor; // [30] On Color
 unsigned char offColor; // [31] Off Color
 unsigned char name[32]; // [32] Name
 unsigned char actionA[128]; // [64] Action string A (press, close, etc.)
 unsigned char actionB[128]; // [192] Action string B (release, open, etc.)
} ButtonResource;

CueServer SDK Resources | 15

Timer Event Resource

The Timer resource provides details about a Timer Event, including it’s name, the details about
when the timer should fire and the CueScript action that should be taken.

The Resource IDs of Timer resources are always sequential and start with ID 0.

The following C data structure defines the fields in the Timer resource:
#define RESTYPE_TIMER 0x13 // Resource type for Timer resources
#define TIMER_LIST_MAX_SIZE 100 // Maximum number of timers in the timer list

typedef struct TimerData {
 intTimerResourceastro; // [0] 0 = regular, 1 = sunrise, 2 = sunset
 int time; // [2] Time of the day (in minutes since midnight)
 int dotw; // [4] Days of the week mask [SMTWTFS-]
 int offset; // [6] Offset from astro time (+/-), in minutes
 int startDay; // [8] First day number to activate (0 = Any)
 int endDay; // [10] Last day number to activate (0 = Same)
 int reserved[2]; // [12] Reserved
 unsigned char name[32]; // [16] Name
 unsigned char cmd[128]; // [48] Command string
} TimerResource;

Timecode Event Resource

The Timecode resource provides details about a Timecode Event, including it’s name, the SMPTE
trigger time and the CueScript action that should be taken.

The Resource IDs of Timecode resources are always sequential and start with ID 0.

The following C data structure defines the fields in the Timecode resource:
#define RESTYPE_TIMECODE 0x15 // Resource type for Timecode resources
#define TIMECODE_LIST_MAX_SIZE 500 // Max number of items in the timecode list

typedef struct TimecodeResource {
 unsigned long time; // [0] Timecode of event
 unsigned char reserved[12]; // [4] Reserved
 unsigned char name[32]; // [16] Name
 unsigned char cmd[128]; // [48] Command string
} TimecodeResource;

16 | Resources CueServer SDK

Macro Resource

The Macro resource provides details about a Macro, including it’s name and the CueScript action
that should be performed.

The Resource ID of a Macro resource is equal to the Macro number. Valid macro numbers range
from 1 through 65439.

The following C data structure defines the fields in the Macro resource:
#define RESTYPE_MACRO 0x16 // Resource type for Macro resources
#define MACRO_LIST_MAX_SIZE 200 // Maximum number of macros in the macro list
#define MAX_MACRO_NUMBER 65439 // Maximum group number

typedef struct MacroResource {
 unsigned int id; // [0] ID Number of Macro
 unsigned char showInMenu; // [2] Show in menu
 unsigned char reserved[13]; // [3] Reserved
 unsigned char name[32]; // [16] Name
 unsigned char cmd[128]; // [48] Command string
} MacroResource;

DMX Input Trigger Resource

The DMX Input Trigger resource provides details about a DMX Input Event, including it’s name,
trigger parameters and the CueScript actions that should be taken.

The Resource IDs of DMX Input Trigger resources are always sequential and start with ID 0.

The following C data structure defines the fields in the DMX Input Trigger resource:
#define RESTYPE_DMXTRIGGER 0x17 // Resource type for DMX Trigger resources
#define DMXTRIGGER_LIST_MAX_SIZE 256 // Max number of items in the DMX Trigger list

typedef struct DMXTriggerResource {
 unsigned char rangeLow; // [0] Low end of range
 unsigned char rangeHigh; // [1] High end of range
 unsigned int channel; // [2] DMX Channel (0 - 511)
 unsigned char reserved[12]; // [4] Reserved
 unsigned char name[32]; // [16] Name
 unsigned char enterCmd[128]; // [48] Command string for enter event
 unsigned char exitCmd[128]; // [176] Command string for exit event
} DMXTriggerResource;

CueServer SDK CueServer .csd File Format | 17

CueServer .csd File Format
CueServer uses the .csd file format to load and save show file databases into and out of CueServer’s
internal memory.

You can use this file format to either parse an existing show file or create one yourself.

CueServer can read and/or write these files directly from it’s web interface, or through the CueServer
Admin tool (an application program available for both Mac and Windows) or programmatically via an
HTTP mechanism.

File Specifications

The CSD file format is designed to store an array of “CueServer resources”. A resource is a 512-byte
block of data that has an associated Type and ID (and optionally a timestamp, that is used only for
resources of type “stream”). See the Resources chapter in this manual for details.

Resource Types may be CueInfo, CueData, Macro, Timer, Button, etc. The resource ID usually cor-
responds to the resource type, for example, Macro 3 has a resource ID of 3, Cue 1.0 has a resource
ID of 10.

The file is read and written by “lines”. There are two types of lines supported.

Comment Line

A comment line starts with a ‘#’ character and ends with a line-feed (0x0A) byte. The data between
the # and the LF is ignored and may be of any length.

All CSD files start with a comment line of the following format:

CueServer Data File (xxxx)

The xxxx above is replaced with the firmware version of the CueServer that produced the file.

Resource Data Line

A resource data line stores the 512-byte resource data as well as the resource’s Type, ID and option-
ally it’s Timestamp.

Each data line is formatted as follows:

 <Resource Type><Resource ID><Resource Time>’$’<Resource Data>’!’

 • Resource Type
This is an ASCII printed byte (two ASCII characters) that specify the Resource Type for the line.
Valid values are from “00” through “1F”.

18 | CueServer .csd File Format CueServer SDK

 • Resource ID
This is an ASCII printed 2-byte word (four ASCII characters) that specify the Resource ID for
the line. The MSB is printed first. Values from “0000” through “FFFF” are valid.

 • Resource Time
This is an ASCII printed 4-byte long (eight ASCII characters) that specify the Resource Time
for the line. The MSB is printed first. This field may contain values “00000000” through
“FFFFFFFF”.

 • $
This is a single byte 0x24.

 • Resource Data
This is the 512 bytes in the resource. They are not ASCII encoded.

 • !
This is a single byte 0x21.

Given the fields above, every data line in the file is exactly 528 bytes long.

The file ends at the end of the last resource line or comment line.

When reading this file in, if the first comment is improperly formatted or if any of the markers in the file
are incorrect (the ‘$’ and the ‘!’), the file is considered bad.

